Deep Nearest Class Mean Model for Incremental Odor Classification
نویسندگان
چکیده
منابع مشابه
Deep Nearest Class Mean Model for Incremental Odor Classification
In recent years, more and more machine learning algorithms have been applied to odor recognition. These odor recognition algorithms usually assume that the training dataset is static. However, for some odor recognition tasks, the odor dataset is dynamically growing where not only the training samples but also the number of classes increase over time. Motivated by this concern, we proposed a dee...
متن کاملDeep Nearest Class Mean Classifiers
In this paper we introduce DeepNCM, a Nearest Class Mean classification method enhanced to directly learn highly non-linear deep (visual) representations of the data. To overcome the computational expensive process of recomputing the class means after every update of the representation, we opt for approximating the class means with an online estimate. Moreover, to allow the class means to follo...
متن کاملIncremental One-Class Models for Data Classification
In this paper we outline a PhD research plan. This research contributes to the field of one-class incremental learning and classification in case of non-stationary environments. The goal of this PhD is to define a new classification framework able to deal with very small learning dataset at the beginning of the process and with abilities to adjust itself according to the variability of the inco...
متن کاملLearning Deep Features for One-Class Classification
We propose a deep learning-based solution for the problem of feature learning in one-class classification. The proposed method operates on top of a Convolutional Neural Network (CNN) of choice and produces descriptive features while maintaining a low intra-class variance in the feature space for the given class. For this purpose two loss functions, compactness loss and descriptiveness loss are ...
متن کاملSimple Incremental One-Class Support Vector Classification
We introduce the OneClassMaxMinOver (OMMO) algorithm for the problem of one-class support vector classification. The algorithm is extremely simple and therefore a convenient choice for practitioners. We prove that in the hard-margin case the algorithm converges with O(1/ √ t) to the maximum margin solution of the support vector approach for one-class classification introduced by Schölkopf et al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Instrumentation and Measurement
سال: 2019
ISSN: 0018-9456,1557-9662
DOI: 10.1109/tim.2018.2863438